STABILITY OF PLANE-PARALLEL CONVECTIVE
FLUID FLOW IN A HORIZONTAL LAYER RELATIVE
TO SPATIAL PERTURBATIONS
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and V, M, Myznikov

The stability of stationary plane-parallel convective flow between horizontal planes along
which a constant temperature gradient is given, is investigated relative to spatial pertur-
bations. It is shown that the flow crisis is caused by spiral perturbations in a broad range
of Prandtl number values (P > 0,24), Spiral perturbations are developed in unstably strati-
fied fluidlayers adjoining the upper and lower layer boundaries, and are of Rayleigh nature,

1. The stability of a stationary plane-parallel convective flow between horizontal planes along which
a constant temperature gradient is given is considered in [1] and the stability boundary relative to plane—
normal perturbations is determined. The stability investigation of this flow is continued in this paper and
spatial perturbations are examined,

A plane-parallel stationary flow originates in a horizontal layer bounded by solid planes along which
the temperature varies linearly (Fig. 1). The dimensionless velocity and temperature (the measurement
units are indicated in {1]) are distributed over the section as follows:

=Vs (B — ). To=z-+GPy (1.1)
Ty = g0 (305 — 105 - Ta).

Let us consider normal spatial perturbationsof this flow which are dependent on the time and hori-
zontal coordinates according to the law

(v. T, p) ~exp [— it -+ i (kyy + k31 (1.2)

The spectral problem for the amplitude follows from the linearized perturbation equations (the sys-
tem (2.1)-(2.3) in {11):
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Here vy, Yy, Vz, #,and p are dependent on the transverse coordinate x of the perturbation amplitude,
A is the complex decrement, ky, k; are the wave numbers along the corresponding directions, and G and
P are the Grashof and Prandtl numbers,

The plane perturbations case (ky=0, kz %0, vy=0) is considered in [1]. In contrast to the problem
about spatial perturbations in a plane-parallel flow between parallel planes heated to different temperatures
[2], the spectral problem (1.3) does not reduce to the corresponding problem for plane perturbations, Hence,
the question of the behavior of spatial perturbations requires special consideration, By analogy with the
results in [2], it can be expected that the most "dangerous" among the spatial perturbations are the spiral
perturbations (k; =0, ky #0) in the form of shafts whose axes are parallel to the main flow velocity.
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Setting k, =0 and eliminating the amplitudes of vy and p, we obtain the spectral problem for the spiral
perturbations:

Afry — ky?0 = — My (Ar=7" — k) 1,4}
Ary — Gryloy = — Az

AD — G2Py'ry — GPry;= — APO

r= *1: ta= o =e=0=20.

Because of the oddness of the velocity v, and temperature 7, profiles, the boundary-value problem
(1.4) admits of solutions of two kinds, even and odd relative to the middle of the layer,

2. The Galerkin method is used to solve the problem (1,4). The approximations of the amplitudes
of vg, vy and 6 are
{

N-—-1
¥ —_ —_— - 2'1
L= 2[ amq:m’ 6= 2 buen’ v, = 2 Fl“[ * ( )
m=0 n=Q =0

The basis functions ¢n,, 8y, 07 (they have the meaning of perturbation amplitudes in a fixed fluid
layer) are determined by solutions of the boundary-value problems

A = — Um AGpm, Pm (£ 1) = @’ (= 1) =0
Ay = — v, PO, 0, (+1)=0
Ang= - e, o (x =0 . (2.2)

The approximations (2,1) contain from four to 20 basis functions in expansions of vy, 6, vz.

. The fundamental results of the computations are represented in Figs, 2-4. Showa in Fig, 2 are the
real parts of the perturbation decrements Ay as a function of the Grashof number G for {ixed parameters
P=0.5, ky =4, The solid lines show the real branches of the spectrum; the dash—dot lines denote the com~
mon real part of the pairs of complex-conjugate decrements, Allthe levels are real for G=0 and alter-
nate as follows in order of increasing decrements: Xg, ftg, X1, M1» Yoy X35 Mos Vi, X3. AS 18 seen from the
spectrum, there are two critical points at which an instability of monotonic form orviginates {the real de-
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crement becomes zero)., The lower (even) instability level is generated by a mixture of even branches
of vy and x,, The higher (odd) level is generated by a mixture of odd branches of x4 and uy. The critical
Grashof numbers are close together, The monotonic nature of the instability, the presence of two criti=
cal points, and their closeness are conserved even for other values of the parameters P and ky.

Shown in Fig. 3 are the neutral curves on the plane of the critical Rayleigh number R — wave number
ky (R=GP). The solid lines map the neutral curves for the even instability level; the dashed lines refer
to an odd level, The numbers 1-4 of the pairs of neutral curves correspond to values of the Prandtl numbers
0.2, 0.5, 1, and 10, It is seen that the critical wave number is close to ky, ®4 in a broad range of values
of P,

The combined stability diagram is presented in Fig, 4. The dependence of the minimal critical Gras-
hof number G,, onthe Prandtl number P is shown for different instability modes. Curve 1 yields the
stability boundary relative to plane monotonic perturbations of hydrodynamic type; curve 2 determines the
stability boundary relative to plane traveling perturbations of Rayleigh type (curves 1 and 2 are found in
[1]). The pair of curves 3 refers to the spatial spiral perturbations discussed in this paper, The solid
and dashed lines, respectively, map the stability boundary relative to even and odd perturbations, The
spiral perturbations are the most dangerous among all the kinds of perturbations considered in the broad
range of Prandtl numbers P > 0,24 and result in a crisis of the plane-parallel flow,

The minimal critical numbers Gy, for the even and odd spiral perturbations differ slightly. Even-
type perturbations are more dangerous for P <2,7; while the crisis goes over to the odd perturbation for
P>2,7, The stability boundaries in this range of Prandtl numbers are so close together that they practically
coincide in the scale in Fig. 4.

The critical numbers Gy, diminish monotonically as P grows, and for large P the following asymp-
totic is valid:

Gm=a, P, (2.3)
where the coefficient ¢ is 886 and 879, respectively, for even and odd levels,

Numerical investigations of the eigenfunctions show that a gpiral instability originates because of the
development of perturbations in unstably stratified fluid layers adjoining the upper and lower planes (Fig.1).
Computations of the streamlines inthe x~y plane perpendicular to the main flow direction show that two
fundamental vortices localized in the upper and lower halves of the channel section are formed at a half-
wavelength 7r/ky in the y direction. In the case of an odd perturbation, two vortices, one above the other,
have opposite circulation directions, In the even perturbation case, the main vortices have the same cir-
culation direction and a weak buffer vortex of opposite circulation is formed between them,

The spiral instability is due to the equilibrium crisis of the fluid heated from below, just as the in~
stability relative to plane traveling waves (curve 2 in Fig. 4). The unstable temperature stratification is
produced by plane-parallel flow. This flow exerts influence on the condition for the origination of 2 Ray-
leigh-type instability.

The Rayleigh nature of the spiral instability is verified by the fact that the Rayleigh number [formula
(2.3)] is the governing parameter for large P, The boundary-value problem (1.4) can be simplified for large
P, 1t follows from the first two equations of the system (1.4) that the amplitudes are on the order of (A =0)
on the stability boundary 6 ~vyg, vy ~Gvg~P-lvy. The first and third equations then become

Mrp= k0. A0 = Rityry . (2.4)

Together with the appropriate boundary conditions, these equations govern the neutral perturbations
in a fixed fluid with a vertical temperature gradient 7,'. In contrast to the spiral perturbations, the plane
traveling perturbations considered in 1] are also a Rayleigh instability on which the main stream acts in
a stabilizing manner,

LITERATURE CITED

1. G. Z. Gershuni, E, M, Zhukovitskii, and V., M, Myznikov, "On the stability of plane-parallel convec-
tive fluid flow in a horizontal layer," Zh, Prikl, Mekhan, Tekh. Fiz., No. 1 (1974).

2. G. Z. Gershuni and E, M, Zhukovitskii, "On the stability of plane-parallel convective motion relative
to spatial perturbations,” Prikl, Matem, i Mekhan., 33, No. 5 (1969).

708



